Fast and Accurate Visual Place Recognition Using Street-View Images
نویسندگان
چکیده
منابع مشابه
Highly Accurate and Fast Face Recognition Using Near Infrared Images
In this paper, we present a highly accurate, realtime face recognition system for cooperative user applications. The novelties are: (1) a novel design of camera hardware, and (2) a learning based procedure for effective face and eye detection and recognition with the resulting imagery. The hardware minimizes environmental lighting and delivers face images with frontal lighting. This avoids many...
متن کاملBuilding Instance Classification Using Street View Images
This is the pre-print version, to read the final version please go to ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier. (https://doi.org/DOI: 10.1016/j.isprsjprs.2018.02.006). Land-use classification based on spaceborne or aerial remote sensing images has been extensively studied over the past decades. Such classification is usually a patch-wise or pixel-wise labeling over the whole...
متن کاملVisual Place Recognition Using Landmark Distribution Descriptors
Recent work by Sünderhauf et al. [1] demonstrated improved visual place recognition using proposal regions coupled with features from convolutional neural networks (CNN) to match landmarks between views. In this work we extend the approach by introducing descriptors built from landmark features which also encode the spatial distribution of the landmarks within a view. Matching descriptors then ...
متن کاملEntrance Detection from Street-View Images
We present a system for detecting building entrances in outdoor scenes, an important problem for urban scene understanding. While entrance detection in indoor scenes has received a lot of attention, tackling the problem in outdoor scenes is considerably more complicated and remains largely unexplored. The wide variety of door appearances and geometries, background clutter, occlusions, speculari...
متن کاملLayered Interpretation of Street View Images
We propose a layered street view model to encode both depth and semantic information on street view images for autonomous driving. Recently, stixels, stix-mantics, and tiered scene labeling methods have been proposed to model street view images. We propose a 4-layer street view model, a compact representation over the recently proposed stix-mantics model. Our layers encode semantic classes like...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ETRI Journal
سال: 2017
ISSN: 1225-6463
DOI: 10.4218/etrij.17.0116.0034